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A numerical investigation of grain-boundary grooving by means of a level set
method is carried out. An idealized polycrystalline interconnect which consists of
grains separated by parallel grain boundaries aligned normal to the average orienta-
tion of the surface is considered. Initially, the surface diffusion is the only physical
mechanism assumed. The surface diffusion is driven by surface-curvature gradi-
ents, while a fixed surface slope and zero atomic flux are assumed at the groove
root. The corresponding mathematical system is an initial boundary value problem
for a two-dimensional equation of Hamilton–Jacobi type. The results obtained are in
good agreement with both Mullins analytical “small-slope” solution of the linearized
problem (W. W. Mullins, 1957,J. Appl. Phys.28, 333) (for the case of an isolated
grain boundary) and with the solution for a periodic array of grain boundaries (S. A.
Hackney, 1988,Scripta Metall. 22, 1731). Incorporation of an electric field changes
the problem to one of electromigration. Preliminary results of electromigration drift
velocity simulations in copper lines are presented and discussed.c© 2001 Academic Press

1. INTRODUCTION

This paper presents the results of our work on numerical modeling and simulation of
grain-boundary (GB) grooving by surface diffusion. Our ultimate goal is to develop and
test a fast numerical approach for the simulation of the formation development propagation
of groove-like defects in thin film interconnects used in microelectronics (ME).

In the modern ME industry, the quality and reliability of ME integrated circuits (ICs) have
become no less important than their performance. Some of the most vulnerable elements
of ME ICs, susceptible to several types of mechanical failures, are the interconnects. These
are metallic conductors which connect the active elements.
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The defects (due to the small cross-section, high current density, mechanical stresses,
and presence of GBs acting as fast diffusion pathways) lead to the loss of electrical and
mechanical integrity, i.e., to line opens or shorts. Thus, such defects are one of the main
reliability concerns in advanced integrated circuits.

1.1. Mechanisms of Mechanical Failure in Interconnect Lines

In this section we describe some basic failure mechanisms in interconnects and outline
an appropriate physical model.

Many properties of polycrystalline materials are affected by the intersection of GBs with
external surfaces, especially in the presence of applied or internal fields. Common examples
are growth of GB grooves and cavities [13, 14], stress voiding [31], and electromigration
(EM) [2, 15, 21, 25].

In the absence of an external potential field, the GB atomic fluxIGB = 0, and the corre-
sponding groove profile evolves via surface diffusion under well-known conditions of scale
and temperature (the so-called Mullins problem [17]). Mass transport by surface diffusion is
driven by the surface Laplacian of curvature. Essentially for convex surfaces, matter flows
from high-curvature regions, while for concave surfaces the flow is from low-curvature
regions. To solve surface-diffusion problems, four different approaches have been taken.
We refer the interested reader to the article by Zhang and Schneibel [32], where these
approaches are discussed, and to the references therein.

The physical origins of a GB flux may be gradients of the normal stress at grain boundaries
[8] and/or electromigration forces [3]. GB grooving with a GB flux in real thin film intercon-
nects is a complex problem. It requires a sophisticated numerical modeling technique which
can manage with such issues as aperiodic arrays of GBs, anisotropy of the surface tension,
GB migration, formation of slits with a local steady-state shape in the near-tip region, and
bridging across the slits near their intersections with the surface left behind [21]. The level
set (LS) method seems to be a good candidate for addressing the problems; however, it
has never been used for this purpose. As the first step in application of the LS method to
the problem of grooving with an EM flux, we test in this paper the LS method over two
simple—and already solved—grooving problems, and compare the results of LS method
with those in [10, 17]. The first problem is the classical Mullins problem (GB grooving
controlled by surface diffusion in an infinite bicrystal with a stationary GB). The second is
GB grooving by surface diffusion in a periodic GB array of stationary GBs. Finally, we show
the incorporation of an electric field as a driving force (the electromigration problem) and
present preliminary results which show extremely good correlation with experimental data.

Below we give more details of the physical model.

The Mullins problem—Driving forces and diffusion mobilities.In the absence of an
electric current, the diffusion is driven by a variation in chemical potential,µs, which
causes atoms to migrate from high-potential to low-potential regions. It may be shown that
[17]

µs = KsγsÄ, (1.1)

whereKs is the surface curvature,γs is the surface tension, andÄ is the atomic volume.
Gradients of chemical potential are therefore associated with gradients of curvature.

In interconnects, GBs represent numerous fast diffusion pathways with a high diffusion
coefficient,Dgb. As a matter of fact, the bulk diffusion can be neglected [17]. The diffusion
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flux along the GB,Jgb, is given by

Jgb = Dgbδgb

kT
∇µs, (1.2)

whereδgb is the GB thickness,k is the Boltzmann constant, andT is the absolute temperature.
Let τ be the tangential direction to the surface profile in 2D. Ifn = (nx, ny) is the unit

vector normal to the surface or GB, then the following relations hold:

τ = (ny,−nx),
∂Ks

∂τ
= ∇Ks · τ = ∂Ks

∂x
ny − ∂Ks

∂y
nx ≡ K s

τ . (1.3)

The surface-diffusion flux along the groove walls (volume crossing unit length per unit
time) is given by

J∇Ks
s = −Dsδs

kT

∂µs

∂τ
= −BKs

τ , (1.4)

where the superscript indicates that the flux is due to the curvature gradient,

B = DsδsγsÄ

kT
(1.5)

is known as Mullins constant, andDs, δs, k, andT denote surface-diffusion coefficient,
thickness of the surface-diffusion layer, Bolzmann’s constant, and absolute temperature,
respectively. Note thatJ∇Ks

s is proportional to the first directional derivative of the curvature.

Physical boundary condition at the groove root.This boundary condition is dictated
by the local equilibrium between the surface tension,γs, and the GB tension,γgb. In the
symmetric case of a GB (x = 0) normal to an original (y = const.) flat surface, the angle
of inclination of the right branch of the surface at the groove root with respect to thex axis
is [17] (see Fig. 1)

θ0 = sin−1(γgb/2γs) = const. (1.6)

The rapid establishment of the equilibrium angle between the GB and the surface by atomic
migration in the vicinity of the intersection develops some curvature gradient at the adjacent
surface and thus induces a surface-diffusion flux along the groove wall in the direction away
from the groove root, opposite to the groove extension direction.

2. MATHEMATICAL MODEL

2.1. The Conventional Approaches

An adequate mathematical model which captures the above physical phenomena in in-
terconnects was first developed by Mullins [17] and further extended by him and others
[13, 14, 18]. It describes the evolution of the groove shape,y(x, t) and has the form of a
transport equation

yt = −∂ J∇Ks
s

∂x
= −B

{(
1+ y2

x

)−1/2
[(

1+ y2
x

)−3/2
yxx

]
x

}
x
. (2.1)

J∇Ks
s andB are given in (1.4) and (1.5).
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FIG. 1. Sketch of a GB groove.w denotes the half-width of the groove, andd denotes the depth.

For an isolated GB atx = 0, the groove continues to develop because the material con-
tinues to move from the curved shoulder of the groove to the flat surface. The classical
description is provided by an analytic solution (on thex > 0 side) of the linearized version
of Eq. (2.1) (the “small slope approximation,” SSA). The linearized equation has the form
[17]

yt = −Byxxxx, (2.2)

subject to the initial condition

y(x, 0) = const, (2.3)

and the boundary conditions

yx(0, t) = tanθ0 = m¿ 1,

J∇Ks
s (0, t) = yxxx(0, t) = 0, (2.4)

y(x→∞, t) = const with all derivatives.

The first condition in (2.4) is the small slope approximation itself. The second one reflects
the absence of a GB fluxJgb. The solution describes a profile with a constant shape whose
linear dimensions are increasing all the time.

Although this analytical approach describes some basic phenomena in interconnects,
it is of limited use because of the restriction on the steepness of the slope. There are
several numerical techniques which are widely used in modeling moving fronts, such as
themarker/string(M/S) methods [26] or thevolume-of-fluid(VOF) methods [7, 20]. These
methods deal directly with the evolution equation of type (2.1), and therefore are “explicit”



768 KHENNER ET AL.

methods. The M/S methods derived from a Lagrangian approach to front evolution problems.
In the Lagrangian approach, the grid is attached to the moving front. A known drawback
of the Lagrangian approach is that it is not well suited to computation of bifurcating fronts.
In addition, stability and local singularity problems are emphasized more in these methods
than in methods based on an Eulerian approach, such as the VOF method. The Eulerian
approach,where the front moves through a grid which is fixed in space, does not have these
drawbacks, but—as is known—here the fronts are diffused. In addition, some intricate
(subcell) bookkeeping is required to properly keep track of fronts.

There are numerical approaches which are based onfinite-elementdiscretization of the
computational region [5]. However, they result in complicated algorithms which involve
many computational steps such as computations of the following: displacement field of
material points from a reference configuration, the stress field as a result of diffusion in
the solid, and geometry update of interfaces. In addition, the computational complexity
grows because higher resolution is required as the shape of the interface becomes more
complicated. As a result, these methods are unable to handle very complex multidimensional
boundary shapes.

2.2. The Proposed Solution: Use of the Level Set Method

To “capture” the interface (rather than to track it), our method of choice is the “implicit”
LS method. The method was introduced by Osher and Sethian and was further developed
during the past several years (for an introduction to the LS methods and an exhaustive
bibliography list, see the monographs by Sethian [27, 28]). The method makes it possible
to capture drastic changes in the shape of curves (interfaces) and even topology changes.

The basic idea of the method consists of embedding the curvey(x, t) into a higher
dimensional space. As a matter of fact, we consider the evolution of a two-dimensional
field φ(x, y, t) such that its zero level set,φ(x, y, t) = 0, coincides with the curve of
interest,y(x, t), at any time momentt . The level set functionφ(x, y, t) can be interpreted
as a signed distance from the curvey(x, t), which moves in the direction normal to itself.

The evolution ofφ(x, y, t) is described by an Hamilton–Jacobi-type equation. A re-
markable trait of the method is that the functionφ(x, y, t) remains smooth, while the level
surfaceφ = 0 may change topology, break, merge, and form sharp corners asφ evolves.
Thus, it is possible to perform numerical simulation on a discrete grid in the spatial domain
and to substitute finite-difference approximation for the spatial and temporal derivatives in
time and space.

The evolution equation has the form

φt + F |∇φ| = 0, given φ(x, t = 0). (2.5)

The normal velocity,F , is considered to be a function of spatial derivatives ofφ(x, y, t).
In many applications,F is a function of the curvature,Ks, and its spatial derivatives. The
curvatureKs may be computed via the level set functionφ as

Ks = ∇ · n, n = ∇φ|∇φ| =
(

φx(
φ2

x + φ2
y

)1/2 ,
φy(

φ2
x + φ2

y

)1/2

)
. (2.6)

Heren is “normal vector,” and it coincides with the (previously introduced) unit normal to
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the surface,y(x, t), on the zero level setφ = 0. Formulas (2.6) can be combined as

Ks = ∇ · ∇φ|∇φ| =
φxxφ

2
y − 2φxφyφxy+ φyyφ

2
x(

φ2
x + φ2

y

)3/2 , (2.7)

and the sign ofKs is chosen such that a sphere has a positive mean curvature equal to its
radius. In the case of surface diffusion in 2D,

F = −BKs
ττ . (2.8)

One drawback of the LS method stems from its computational expense. Its complexity
seems to be as many asO(n2) operations per time step, which is more than any Lagrangian
method, which necessitatesO(n) operations per time step, wheren is the number of grid
points in the spatial direction. It is possible, however, to reduce the complexity of the LS
method toO(n) using a local (another term is narrow band (tube)) approach [1, 24]. This
is achieved by the construction of an adaptive mesh around the propagating interface. We
distinguish between the “near field,” which is a thin band of neighboring level sets around
the propagating front, and the “far field,” which contains the rest of the grid points. The
evolution equation is solved only in the near field. The values ofφ at grid points in the far
field are not updated at all. When the interface in motion reaches the edge of the narrow
band, a new narrow band is built around the current interface position. Note that this could
be done without interface reconstruction from the level set function (which requires some
additional computations).We just have to examine the shift in the sign ofφ at grid points
adjacent to the interface. The width of the narrow band is determined as a balance between
the computation involved in the rebuilt and the calculations performed on far away points.

In most of the applications of the LS method to date, the driving forces were proportional
to the curvature (see [27, 28] for review and discussion). There are only a few applications
[2, 6, 15] where the driving force is proportional to thesecond directional derivativeof
the curvature (in the 3D case, to the surface Laplacian of curvature which is constructed
from the derivatives in each principal direction), which is the case for the normal velocity
function (2.8). Therefore, the present materials science problem presents a rather new (from
the mathematical point of view) application for the LS method. As pointed out in [6], “this
is an intrinsically difficult problem for three reasons. First, owing to the lack of a nice
maximum principle, an embedded curve need not stay embedded, and this has significant
implications in attempting to analyze motion which results in topological change. Second,
the equations of motion contain a fourth derivative term, and hence are highly sensitive to
errors. Third, this fourth derivative term leads to schemes with very small time steps.”

2.3. Computational Algorithm

A typical computational domain is a rectangular box [0, l1; 0, l2] of a material in 2D. The
proposed computational algorithm consists of the following steps:

BEGIN ALGORITHM

1. Discretization. The entire computational regionW is discretized using a uniform grid
xi = i1x, yj = j1y, i = 0 . . . N, j = 0 . . .M , whereN and M are the number of grid
points inx- andy-directions respectively. The functions are projected on this grid so that
φ(x, y, t) = φi, j (t).
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FIG. 2. Computational domain.

2. Initialization . The initial interface,y(x, t = 0), is defined analytically, or as a set of
points inW (the points lie onx = const. grid lines, but not necessarily ony = const. grid
lines). In the latter case, we define a cubic splineξ(x, t = 0) passing through these points
to perform further initializations. The functiony(x, t = 0) need not be necessarily smooth
(i.e., it may feature sharp corners, discontinuities, etc.), but in our implementation it must
be single-valued to make it possible to choose the sign ofφ (below).This is because we are
only interested in the particular case of analyzing the motion of open curves which may be
described by functions during the whole process of the evolution.

We also define the near field and the far field. The width of the near field is usually 5 to
10 grid levels (points).

In the regionW, the level set functionφ is initialized as an exact signed distance function
to the initial interface (see Fig. 2),

φ(xi , yj , t = 0) < 0 if yj < y(x, t = 0)

φ(xi , yj , t = 0) = 0 if yj = y(x, t = 0) (2.9)

φ(xi , yj , t = 0) > 0 if yj > y(x, t = 0).

Sinceφ(x, y, t = 0) is a signed distance function,|∇φ(x, y, t = 0)| = 1.
3. Computenormal vector components and curvature using formulas (2.6) and (2.7). The

derivatives in (2.6) and (2.7) (as well as in other functions ofx andy except the gradient
term in the evolution equation itself; see step 6) are discretized using the standard second-
order-accurate central difference approximations. Fourth-order-accurate approximations
were also tested, but we did not observe any particular increase in the global accuracy of the
calculations. In addition, in this case, the implementation of the boundary conditions with
the level set function is problematic because of the use of a wide stencil. The time step also
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needs to be reduced to have stability. We find that the standard central difference scheme
works well for us.

4. Computefirst directional derivative of the curvature,K s
τ ,using the formula (1.3) and

second directional derivative of the curvature,K s
ττ ,

K s
ττ = ∇ [∇Ks · τ ] · τ = −K s

xxφ
2
y + 2K s

xyφxφy − K s
yyφ

2
x

φ2
x + φ2

y

+ Ks
(
K s

xφx + K s
yφy
)(

φ2
x + φ2

y

)1/2

= −K s
xxφ

2
y + 2K s

xyφxφy − K s
yyφ

2
x

φ2
x + φ2

y

+Ks
[
K s
τ+K s

y(nx + ny)−K s
x(ny − nx)

]
. (2.10)

We now have the normal velocity function (2.8) and the flux (1.4).
5. Choosetime step. The CFL condition for the surface diffusion is

1t1 ≤ min4(1x,1y)/B. (2.11)

The CFL condition for the Hamilton–Jacobi equation in updating the velocity is

1t2 ≤ min(1x,1y)/Fmax, (2.12)

whereFmax is the largest magnitude of the normal velocity in the computational domain.
The adaptive time step1t is chosen as the smaller of the two.

6. Compute backward and forward gradient functions;update φ from the evolution
equation using explicit time-stepping scheme. The solutions of Eq. (2.5) are often only
uniformly continuous with discontinuous derivatives, no matter how smooth the initial data
[22, 23]. Simple central differencing is not appropriate here to approximate the spatial
derivatives in|∇φ|. Instead, we use essentially nonoscillatory (ENO) type schemes for
Hamilton–Jacobi equations as developed in [22, 23, 29]. More precisely, we use second-
order ENO scheme given explicitly in [33]. To updateφ for one time step, the simplest
method is to use Euler, i.e.,

φn+1 = φn +1t L(φn), (2.13)

whereL(φ) is the spatial operator in (2.5).
7. Updatenear field. Check the sign ofφ at the grid points adjacent to the interface and

compute the new locations of near field points.

Go to step 3

END ALGORITHM

Remark 1. To achieve a uniformly high-order accuracy in time, we replace (2.13) with
the second-order total variation diminishing (TVD) Runge–Kutta-type discretization [23,
29], which reads

φ̃n+1 = φn +1t L(φn)
(2.14)

φn+1 = φn + 1t

2
[L(φn)+ L(φ̃n+1)].

The necessary changes to the algorithm are obvious. The choice of such a low-order Runge–
Kutta scheme is justified by the fact that the time step, dictated by stability requirements,
is very small.
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Remark 2. It is highly desirable that the level sets behave nicely, in the sense that two
different level sets do not cross, and in fact remain roughly evenly spaced in time. In terms
of the level set functionφ, this corresponds to the fact that the gradient ofφ at any given
point of a level set does not change dramatically over time. For the numerical method this
translates into numerical stability. The best way to achieve this is to keepφ close to the
signed distance function (or even to keep it exactly equal to the signed distance function),
thus keeping|∇φ| ≈ (=)1. The operations performed onφ that accomplish this are called
“reinitialization.” To summarize, reinitialization is the process of replacingφ(x, y, t) with
another functionφ̃(x, y, t) that has the same zero contour asφ(x, y, t) but behaves better,
and then taking this new functioñφ(x, y, t) as the initial data to use until the next round of
reinitialization. There are several ways to do this. The straightforward one (first proposed
in [16] and recently used in [2]) is to interrupt the time stepping, reconstruct the interface
using some interpolation technique, and directly compute a new signed distance function
to the interface. This approach is very expensive and also may bring some undesirable side
effects, such as oscillations in the curvature. Instead, we use the iteration procedure of [30].
The functionφ is reinitialized by solving the Hamilton–Jacobi-type equation to its steady
state, which is the desired signed distance function,

φt = S(φ0) (1− |∇φ|) , (2.15)

whereS is a smoothed sign function,

S(φ0) = φ0√
φ2

0 + ε2
, ε = min(1x,1y). (2.16)

The same second-order ENO and TVD Runge–Kutta schemes used for the solution of
Eq. (2.5) are used for the iteration of (2.15). As a rule, three or four iterations are sufficient
to evolveφ close enough to the desired signed distance function. An important practical
question is how frequently the reinitializations are applied. In some applications of the
level set method, the reinitializations could be triggered after a fixed number of time steps.
However, we achieved the best results by reinitializing every time step in the band of level
sets that contains points from the near field.

Remark 3. The evolving interface touches the vertical boundariesx = 0, x = l1 at its
ends and therefore any boundary conditions imposed on vertical walls influence the evo-
lution of the front. This is why, depending on the nature of the problem, we choose either
periodic boundary conditions at vertical walls or only an approximation of the derivatives
at vertical walls by one-sided differences. At the horizontal walls, we always use one-sided
differences. For illustration purposes, in Fig. 3 we present part of the cosine curve evolving
under (2.5) with the speed functionF = −0.1K s

ττ . Boundary conditions at vertical walls are
periodic. Note that the speed of evolution slows as the curve approaches equilibrium state
with Ks = 0 (liney = 0.5). This is because the curvature, and hence its derivative, becomes
smaller. To demonstrate the abilities of the method, in Fig. 4 we present the evolution of a
nonsmooth curve (step function) under the same speed law.

Remark 4. The very special feature of the presented implementation of the level set
method is the incorporation of physical boundary conditions into the level set numerical
scheme. Most of the implementations known so far lack this complication. Usually only
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FIG. 3. The cosine curve, evolving under (2.5) withF = −0.1 K s
ττ . A coarse 75× 75 grid is used. 25,000

time steps were made by the Runge–Kutta integrator (the shape is printed out every 500 steps), and we reinitialize
in every step.

closed interfaces far away from any boundaries domains are considered, while the evolution
proceeds far away from the boundaries.

For GB grooving by surface diffusion, two boundary conditions at the groove root are
essential: these are conditions of type (2.4), reflecting the fixed slope of the interface and
the absence of GB atomic flux. The boundary conditions we impose atx = l1 are zero slope

FIG. 4. The evolution of a nonsmooth curve (step function). The grid used is 100× 100; 20,000 time steps
were made.
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of the interface and zero flux. The first condition echoes the initial flat interface. The second
condition guarantees the conservation of matter, i.e., a constant area under the groove profile
during the evolution.

Special attention was given to the treatment of these boundary conditions within the
framework of the level set method. Two methods were developed.

The simplest techniqueis the use of correction step in the iterative algorithm. The fixed
slope at the groove root is achieved in the following way: at every time step, the interface
is reconstructed from theφ field and the locations of the two end points of the interface (at
x = 0 andx = l1, respectively) are corrected to preserve the small-slope and the zero-slope
conditions.Then, for all grid points that lie on grid linesx = 0 andx = l1, it is sufficient to
directly compute a new signed distance to the updated locations of the interface end points.
This way we incorporate the new locations of the end points back into theφ field. This
direct reinitialization is performed only for a few grid points that lie on vertical boundaries
and, besides, this computation does not contain an iteration loop. The zero-flux conditions
could be imposed locally, i.e., in the vicinity of the groove root and of the interface end
point at x = l1, or along the the entirex = 0 andx = l1 grid lines. After the computed
values ofK s

τ are reset to zero, theK s
ττ is computed according to Eq. (2.10), whereK s

τ = 0
atx = 0, l1 andK s

τ 6= 0 otherwise. After multiplication by−B, this gives the values of the
normal velocity function (2.8), corrected by the zero-flux constraint.

Extension of theφ field beyond the GBmakes use of Taylor expansion up to second
order (also see Eq. (2.6)),

φ−1, j = φ0, j − φx

∣∣
0, j 1x = φ0, j − |∇φ0, j | nx

∣∣
0, j 1x = φ0, j + |∇φ0, j | sinθ0 1x,

(2.17)

whereφ−1, j is one grid point beyond the GB. Equation (2.17) incorporates the groove root
angle. Then we compute in (2.7) the curvature values,K s

0, j , along the GB, using both the
values ofφ inside the computational domain (φ1, j ) and outside (φ−1, j ). This also gives us the
values ofK s

y

∣∣
0, j . The zero-flux condition is applied using Eq. (1.3), which, after substitution

of normal vector components from (2.6)and rearrangement of the terms, becomes

K s
x

∣∣
0, j =

K s
τ |∇φ| + K s

yφx

φy

∣∣
0, j = −K s

y

∣∣
0, j tanθ0. (2.18)

Applying Taylor expansion again, we get the ghost values of the curvature,

K s
−1, j = K s

0, j − K s
x

∣∣
0, j 1x, (2.19)

whereK s
x

∣∣
0, j is given by (2.18). Now all the data are known and we can compute the values

of K s
ττ from (2.10) and the values of the normal velocity from (2.8).

Both methods were used successfully in calculations.

3. NUMERICAL RESULTS: MULLINS PROBLEM

Figures 5 to 7 show the groove profile with different slopes at the groove root, evolving
under (2.5) with a speed functionF = −BKs

ττ . We takeB = 0.025. The profile is symmetric
with respect to the GB atx = 0; therefore only its right part is calculated. The results obtained
by means of the LS method are shown with solid lines, while reference results for Mullins
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FIG. 5. GB grooving by surface diffusion. The slope at groove root ism= 6.55e–02. The initial interface is
shown with dashed–dotted line. The numerical results obtained by means of the LS Method are shown with solid
lines. The reference results of [17] are shown with dashed lines.

problem (2.2)–(2.4) are shown with dashed lines. In all the three numerical experiments
reported here, the dimensions of the computational box are [0., 0.08; 0., 0.02], and the mesh
is 120× 40.

Our initial interface for the level set simulations already has the shape of Mullins groove.
The reason we do not have a flat interfacey(x, 0) = const. as an initial condition is that the

FIG. 6. GB grooving by surface diffussion. The slope at groove root ism= 9.85e–02.
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FIG. 7. GB grooving by surface diffusion. The slope at groove root ism= 1.32e–01.

LS formulation requires a nonzero initial curvature; otherwise, the curve does not evolve at
all (sinceF = 0 in this case). The initial interface in Figs. 5–7 is shown with dashed–dotted
line.

The initial Mullins groove is obtained as follows: We numerically integrate Eq. (2.2)
using the method-of-lines approach. The time integrator is second-order Runge–Kutta and
the spatial operator is discretized using second-order central differences. The integration
proceeds fromt = 0 to t = 8.0e–09. The initial and boundary conditions are given in
(2.3) and (2.4), whereθ0 = π/48, π/32, andπ/24 represent Figs. 5–7, respectively. The
corresponding slopes arem= 6.55e–02, 9.85e–02, and 1.32e–01. The practical values
used in the experiments lie between 0.05 and 0.2 and the range of the groove depths in
experiments is between 0.1 and 1µm. The reason we anticipate the use of the analytic
solution to the Mullins problem (2.2)–(2.4) (if it exists) is the truncation of infinite series
in which this solution is represented. The reference results for later times are also obtained
using the described numerical procedure.

In [17], two kinetic laws were established (within the framework of the SSA). One
concerns the evolution of the depth of the groove with respect to the maximum surface
elevation (see Fig. 1). The depth,d, is governed by

d = 0.973m(Bt)1/4. (3.1)

The other kinetic law concerns the evolution of the distance between the position of the
groove root and that of the surface maximum. In the case of the symmetric groove, we call
it the half-width,w, of the groove. It is governed by

w = 2.3(Bt)1/4. (3.2)
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TABLE I

Our Results for GB Grooving, Compared with Classical Mullins Results

Step t d, Eq. (3.1) d, LS M. w, Eq. (3.2) w, LS M. w/d, Eq. (3.3) w/d, LS M.

0 8.0e–9 2.39e–4 2.39e–4 8.60e–3 8.60e–3 3.60e+1 3.60e+1
2e+3 1.6e–8 2.85e–4 2.50e–4 1.03e–2 1.01e–2 3.60e+1 4.03e+1
4e+3 2.4e–8 3.15e–4 2.68e–4 1.14e–2 1.08e–2 3.60e+1 4.02e+1
6e+3 3.2e–8 3.39e–4 2.84e–4 1.22e–2 1.13e–2 3.60e+1 3.99e+1
8e+3 4.0e–8 3.58e–4 2.99e–4 1.29e–2 1.19e–2 3.60e+1 3.96e+1

10e+3 4.8e–8 3.75e–4 3.13e–4 1.35e–2 1.23e–2 3.60e+1 3.94e+1
12e+3 5.6e–8 3.90e–4 3.26e–4 1.41e–2 1.28e–2 3.60e+1 3.91e+1
14e+3 6.4e–8 4.03e–4 3.38e–4 1.45e–2 1.32e–2 3.60e+1 3.89e+1
16e+3 7.2e–8 4.15e–4 3.50e–4 1.50e–2 1.35e–2 3.60e+1 3.87e+1
18e+3 8.0e–8 4.26e–4 3.61e–4 1.54e–2 1.39e–2 3.60e+1 3.85e+1

Note.The slope at groove root ism= 6.55e–02.

From these expressions, we have the time-independent ratio

w/d = 2.3515/m. (3.3)

Under typical experimental conditions a groove of depthd = 0.3 µm is formed within
t = 104 s (2.4 h). It is shown in [17] that it would require approximately 8 days to triple this
depth. This explains why in our numerical experiments the groove seems to stop developing
at later times. The physical reason for this is the increase in the length of a path along which
the surface diffusion takes place. As a rule, we stop the run when the groove doubles its
depth or width.

For the slopes considered, we observe good qualitative agreement with Mullins solution.
The small difference is due to two reasons. First, the results with which we compare are
obtained by integrating the linearized equation (2.2), which is, strictly speaking, valid only
for infinitesimal slopes. The slopes we choose are, of course, finite, and the governing
equation we solve, i.e., Eq. (2.5), is fully nonlinear. Second, there are inevitable area losses,
since the LS method is not fully conservative. For bigger slopes, our grooves appear to be
deeper and wider than that of Mullins.

In Tables I to III, the results for all the three tests are summarized.
An interesting simple extension of the classical two-grain model is the case of a periodic

array of grains separated by parallel GBs. In Fig. 8, we present the results for the evolution
of a surface profile intersected by two GBs,i andi + 1. The physical boundary conditions
at both groove roots are a constant slope of the surface and zero flux (for this example,
the slope at groove roots ism= 9.85e–02). At short times, grooves develop at each grain
boundary according to the solution for an isolated grain boundary, as presented in Figs. 5–7;
grooving stops when, at sufficiently long times, identical circular arcs develop connecting
adjacent GBs. The same result was obtained in [10] using Fourier method and the SSA.

4. THE ELECTROMIGRATION PROBLEM

If an electric field is present, the fluxJs of matter at the curved surface of the conductor is
driven simultaneously by curvature gradients and by the componentE of the local electric
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TABLE II

Same as Table I, but the Slope at Groove Root ism = 9.85e–02

Step t d, Eq. (3.1) d, LS M. w, Eq. (3.2) w, LS M. w/d, Eq. (3.3) w/d, LS M.

0 8.0e–9 3.59e–4 3.59e–4 8.61e–3 8.61e–3 2.40e+1 2.40e+1
2e+3 1.6e–8 4.29e–4 3.95e–4 1.03e–2 1.03e–2 2.40e+1 2.61e+1
4e+3 2.4e–8 4.74e–4 4.38e–4 1.14e–2 1.13e–2 2.40e+1 2.59e+1
6e+3 3.2e–8 5.10e–4 4.77e–4 1.22e–2 1.21e–2 2.40e+1 2.55e+1
8e+3 4.0e–8 5.39e–4 5.12e–4 1.30e–2 1.29e–2 2.40e+1 2.52e+1

10e+3 4.8e–8 5.64e–4 5.45e–4 1.35e–2 1.36e–2 2.40e+1 2.49e+1
12e+3 5.6e–8 5.86e–4 5.76e–4 1.41e–2 1.42e–2 2.40e+1 2.47e+1
14e+3 6.4e–8 6.06e–4 6.05e–4 1.45e–2 1.48e–2 2.40e+1 2.44e+1
16e+3 7.2e–8 6.24e–4 6.33e–4 1.50e–2 1.53e–2 2.40e+1 2.42e+1
18e+3 8.0e–8 6.41e–4 6.59e–4 1.54e–2 1.58e–2 2.40e+1 2.41e+1

TABLE III

Same as Tables I and II, but the Slope at Groove Root ism = 1.32e–01

Step t d, Eq. (3.1) d, LS M. w, Eq. (3.2) w, LS M. w/d, Eq. (3.3) w/d, LS M.

0 8.0e–9 4.80e–4 4.80e–4 8.61e–3 8.61e–3 1.79e+1 1.79e+1
2e+3 1.6e–8 5.74e–4 5.60e–4 1.03e–2 1.06e–2 1.79e+1 1.89e+1
4e+3 2.4e–8 6.36e–4 6.42e–4 1.14e–2 1.19e–2 1.79e+1 1.85e+1
6e+3 3.2e–8 6.83e–4 7.15e–4 1.22e–2 1.30e–2 1.79e+1 1.81e+1
8e+3 4.0e–8 7.22e–4 7.80e–4 1.29e–2 1.39e–2 1.79e+1 1.78e+1

10e+3 4.8e–8 7.56e–4 8.39e–4 1.35e–2 1.47e–2 1.79e+1 1.76e+1
12e+3 5.6e–8 7.86e–4 8.94e–4 1.41e–2 1.55e–2 1.79e+1 1.74e+1
14e+3 6.4e–8 8.12e–4 9.44e–4 1.45e–2 1.62e–2 1.79e+1 1.72e+1
16e+3 7.2e–8 8.36e–4 9.90e–4 1.50e–2 1.69e–2 1.79e+1 1.70e+1
18e+3 8.0e–8 8.59e–4 1.03e–3 1.54e–2 1.75e–2 1.79e+1 1.69e+1

FIG. 8. Long-time evolution of surface profile intersected by two adjacent GBs. The initial surface for LS
simulations is shown with dashed–dotted line.
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field along the surface. LetC andO denote the conductor (interconnect) material domain
and the outer (surrounding) material domain above the surface profile, respectively (see
Fig. 1). In a drift velocity (DV) experiment [4], the surface in question represents the cathode
edge of the interconnect, while the outer domain is an underlayer with higher resistivity,
e.g., TiN. Assume that (at a given time step of overall marching algorithm)U (x, y) is
the electric potential within the (rectangular) computational box.U−(U+) andU+(U−)
are its values on the upper and lower boundaries of the box, andUn is the normal derivative
on the boundary.U− andU+ are assumed to be time-independent and uniform along the
boundaries;U+ −U− is the external voltage applied to the interconnect. The distribution
U (x, y) is governed by a static elliptic partial differential equation (PDE),

∂

∂x

(
k
∂U

∂x

)
+ ∂

∂y

(
k
∂U

∂y

)
= 0, (4.1)

with boundary conditionsUn = Ux = 0 on the vertical boundaries of the box (which in our
case coincide with GBs). Equation (4.1) is derived from the well-posed three-dimensional
potential problem for the two-layer interconnect. The assumptions and complete derivation
for the small aspect ratio are presented in [2]. In Eq. (4.1),k = k(x, y) is the specific
electrical conductivity (at a given time step) of the material which fills the computational box.
To solve (4.1), a finite-difference scheme was developed and analyzed in [2]. The distribution
of the specific conductivity in the physical system under consideration is discontinuous: the
conductivity inside the conductor material (domainC, Fig. 1) differs by a finite value from
that of the surrounding material (domainO). We assume

k =
{

kin = const. > 0 if grid point(xi , yj ) ∈ C

kout = const. > 0 if grid point(xi , yj ) ∈ O,
(4.2)

i.e., thatk = k(y) is a step function. In our numerical experiments we chose the ratio
kout/kin = 0.1. Since the surface of the conductor evolves in time and space, to find the
time-dependent solutionU (x, y, t) we need to solve the static equation (4.1) every time
step withk given by (4.2). To compute accurately the electric field intensity (which is the
derivative ofU ) the discontinuous distribution of the specific conductivity is smoothed
out across the surface profile. The finite-difference discretization of (4.1) in the compu-
tational domain leads to a set of linear algebraic equations with a sparse-banded matrix.
This set is solved with an effective multigrid iterative procedure [2]. The solution of the
previous time step is used as an initial approximation for the current step, which allows fast
convergence.

After the potential is established everywhere in the computational domain, the corre-
sponding electrically induced surface fluxJE

s is given by

JE
s = −

DsδsZs

kT
E = −BeE, (4.3)

where

E = −τ · ∇U, (4.4)
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the superscript indicates that the flux is due to the electric field, and

Be = DsδsZs

kT
, (4.5)

whereZs = z∗se is the effective charge of the ions undergoing electromigration in the surface
layer ande is the unit electronic charge; the sign ofzs is usually positive (i.e., matter flux
in the direction of the electron flow).

To summarize,

Js = J∇K
s + JE

s , (4.6)

where Js is the total surface flux, andJ∇K
s is its surface-curvature-driven component.

Physically, Eq. (4.6) says that atoms will diffuse in the direction of the electron flow if
the field dominates, but toward the position with the large curvature if the surface energy
dominates. This competition between the electric field and the surface energy is essential
for the groove dynamics.

The electric field also results in the diffusion of matter along GBs. The nonzero diffusion
flux along the GB,Jgb, in the presence of the electric field is given by

Jgb = −DgbδgbZgb

kT
E, (4.7)

whereZgb = z∗gbe> 0 is the effective ionic charge, andE is the component of the electric
field along the GB. In addition to (1.6), the boundary condition which is due to the electric
field reads

Jgb|groove root= 2
(
JE

s + J∇K
s

)|groove root, (4.8)

since both branches of the groove (to the left and to the right from the GB) act as sinks or
sources of matter. Obviously, (4.8) reflects the continuity of material fluxes.

With the addition of the electric field, the normal velocityF (see (2.8)) is now changed
to

F = ∂ Js

∂τ
= ∂ J∇K

s

∂τ
+ ∂ JE

s

∂τ
, (4.9)

whereJs is given by (4.6). The details of the calculation of the normal velocity function
(4.9) are given in [12].

5. NUMERICAL RESULTS: THE ELECTROMIGRATION PROBLEM

The advance of the surface (front) and GB grooving under combined curvature and
electric field effects was simulated for copper interconnects with grain size 0.5 µm at
temperature 600 K. The corresponding parameter set isÄ = 1.18× 10−29 m3, Ds = 3.3×
10−14 m2/s, γs = 1.7 J/m2, kT = 8.28× 10−21 J, U+ = −U− = 5.0× 10−3 V, kin =
108 (Äm)−1, kout = 107 (Äm)−1, δgb = δs = 3.5× 10−10 m, z∗s = z∗gb = 5, θ0 = π/22.
Due to the large number of material parameters involved, we concentrate on the influence
of the one which was predicted to greatly affect the grooving process, i.e., the ratio of the
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FIG. 9. GB grooving by surface/GB diffusion driven by the surface curvature gradients and the electromi-
gration. (a)rd = 0.224, (b)rd = 0.336, (c)rd = 0.561, (d)rd = 22.424. The surface profiles are dumped every
5000 time steps. The time labels correspond to the (physical) time at which the last profile is dumped.

GB to surface diffusivity,rd = Dgb/Ds [9]. It should be noted that (i) the experimentally
measured values of diffusivities could vary, according to different sources, by up to three
orders of magnitude, and (ii)Ds can be smaller thanDgb, due to, for example, surface
contamination, thus givingrd > 1. Typical space–time evolution profiles are shown in Fig. 9.
The dimensions of the computational box are 0.5× 0.5µm (the horizontal dimension being
equal to the grain size), and the grid has a 60× 60 resolution.

The displacement of the surface with time in Fig. 9 is an accurate illustration of the
advancing cathode edge in EM DV experiments. After a transient stage, the displacement
velocityVem reaches a constant value, dependent on temperature through an Arhennius-type
function,

Vem= (V0)emexp(−Eem/kT), (5.1)

where(V0)em is the prefactor andEem is the activation energy. A good match ofbothvalues
between simulation and experiment constitutes a rather rigorous test for the simulation. We
have obtained preliminary results for(V0)em andEem, calculated using the most accurate
literature values for both surface and GB diffusivities in copper; these are known at various
temperatures through their own Arhennius relationships. For parameter set(D0)s = 0.26×
10−4 m2/s, Es = 0.9 eV and(D0)gb = 0.06× 10−4 m2/s, Egb = 0.95 eV we obtained
(V0)em= 3.47× 106 µm/h and Eem= 0.87 eV. These calculated values are in excellent
agreement with experimental values of 4.6× 106 µm/h and 0.94 eV [11], even after we
account for some differences, such as grain size and current density. A more detailed report
is given in [19]. It appears that the level sets model-based simulation allows, for the first
time, an accuratequantitativedescription of DV experiments in polycrystalline lines.
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6. CONCLUSIONS

The level set method was used to model the grain-boundary grooving by surface diffusion
in an idealized polycrystalline interconnect which consists of grains separated by parallel
GBs. The novel feature of the method is the treatment of physical boundary conditions at
the groove root. The results obtained are in good agreement with the classical one [17] for
the case of an isolated grain boundary (two-grain case) and with more recent results of [10]
for the case of periodic array of grains. In addition, the algorithm and its software imple-
mentation were used to pursue studies of GB grooving with an arbitrary electromigration
flux. Preliminary results for Cu at 600 K show an excellent quantitative agreement of drift
velocity preexponent and activation energy between simulation and experiment.

The final time step in the simulations is small. In the Appendix we suggest how to use
an implicit approach that can speedup the simulations.

APPENDIX: IMPLICIT STABILIZATION

We assume initially that we have to solve the linear constant coefficient PDE:

∂ϕ

∂t
= −A12ϕ. (A.1)

An explicit scheme

ϕn+1− ϕn

1t
= −A

(
δ2

x

1x2
+ δ2

y

1y2

)
ϕn, ϕn ≡ ϕn

jk . (A.2)

Von-Neuman (Fourier) stability analysis gives

µ = 1− 16A1t

[
1

(1x)2
sin2

(
α1x

2

)
+ 1

(1y)2
sin2

(
β1y

2

)]2

≡ 1−1t ASα,β .

(A.3)

The stability condition requires|µ| ≤ 1 and the worst case is achieved when the sine terms
reach their maximum values of 1.

For the case of1x = 1y, we get a very severe restriction:

1t <
(1x)4

32A
. (A.4)

Let us add a stabilizing termM12ϕ to both sides,

∂ϕ

∂t
+ M12ϕ = (M − A)12ϕ.

We discretize in time as

ϕn+1+ M1t12ϕn+1 = (M − A)1t12ϕn + ϕn,
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and we get

|µ| =
∣∣∣∣1+ (M − A)1t S2

1+ M1t S2

∣∣∣∣ ≤ 1, (A.5)

whereScan be the continuous symbolS= α2+ β2 or the discreteSα,β .
Now as1x→ 0 for a fixed1t theS2 terms dominate so that|M−A

M | ≤ 1◦, sinceM, A >
0, we need

M − A

M
≥ −1, 2M ≥ A, M ≥ A

2
.

In the linear case, takingM = A
2 (1+ c1t)will result in a second-order scheme in time and

absolute stability. For the variableA, we will require

M ≥ max
x,y
|A(x, y)|.

The Solution Process

Let

ϕn+1+ M12ϕn+1 = Fn, (A.6)

whereFn is known. For the periodic case, we write bothϕ andF as Fourier expansions

Fjk = Re
∑
α,β

F̃α,βei (α j1x+βk1y)

(A.7)

ϕn+1
jk = Re

∑
α,β

ϕ̃α,βei (α j1x+βk1y).

We find F̃α,β by FFT and then ˜ϕα,β from the Fourier tranform of Eq. (7.6)

ϕ̃α,β
(
1+ M(α2+ β2)2

) = F̃α,β,

or we may use the numericalSα,β which approximates the exact symbol. It is less accurate
but avoids some of the Gibbs phenomena. Then each coefficient is obtained by applying
the inverse Fourier transform.
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