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A numerical investigation of grain-boundary grooving by means of a level set
method is carried out. An idealized polycrystalline interconnect which consists of
grains separated by parallel grain boundaries aligned normal to the average orienta-
tion of the surface is considered. Initially, the surface diffusion is the only physical
mechanism assumed. The surface diffusion is driven by surface-curvature gradi-
ents, while a fixed surface slope and zero atomic flux are assumed at the groove
root. The corresponding mathematical system is an initial boundary value problem
for a two-dimensional equation of Hamilton—Jacobi type. The results obtained are in
good agreement with both Mullins analytical “small-slope” solution of the linearized
problem (W. W. Mullins, 1957J. Appl. Phys28, 333) (for the case of an isolated
grain boundary) and with the solution for a periodic array of grain boundaries (S. A.
Hackney, 1988Scripta Metall 22, 1731). Incorporation of an electric field changes
the problem to one of electromigration. Preliminary results of electromigration drift
velocity simulations in copper lines are presented and discusgemo1 Academic Press

1. INTRODUCTION

This paper presents the results of our work on numerical modeling and simulation
grain-boundary (GB) grooving by surface diffusion. Our ultimate goal is to develop at
test a fast numerical approach for the simulation of the formation development propaga
of groove-like defects in thin film interconnects used in microelectronics (ME).

Inthe modern ME industry, the quality and reliability of ME integrated circuits (ICs) hav
become no less important than their performance. Some of the most vulnerable elem
of ME ICs, susceptible to several types of mechanical failures, are the interconnects. Tt
are metallic conductors which connect the active elements.
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The defects (due to the small cross-section, high current density, mechanical stre:
and presence of GBs acting as fast diffusion pathways) lead to the loss of electrical
mechanical integrity, i.e., to line opens or shorts. Thus, such defects are one of the n
reliability concerns in advanced integrated circuits.

1.1. Mechanisms of Mechanical Failure in Interconnect Lines

In this section we describe some basic failure mechanisms in interconnects and ou
an appropriate physical model.

Many properties of polycrystalline materials are affected by the intersection of GBs w
external surfaces, especially in the presence of applied or internal fields. Common exarr
are growth of GB grooves and cavities [13, 14], stress voiding [31], and electromigrati
(EM) [2, 15, 21, 25].

In the absence of an external potential field, the GB atomiclggx= 0, and the corre-
sponding groove profile evolves via surface diffusion under well-known conditions of sc:
and temperature (the so-called Mullins problem [17]). Mass transport by surface diffusio
driven by the surface Laplacian of curvature. Essentially for convex surfaces, matter flc
from high-curvature regions, while for concave surfaces the flow is from low-curvatu
regions. To solve surface-diffusion problems, four different approaches have been ta
We refer the interested reader to the article by Zhang and Schneibel [32], where tt
approaches are discussed, and to the references therein.

The physical origins of a GB flux may be gradients of the normal stress at grain bounda
[8] and/or electromigration forces [3]. GB grooving with a GB flux in real thin film intercon
nects is a complex problem. It requires a sophisticated numerical modeling technique w|
can manage with such issues as aperiodic arrays of GBs, anisotropy of the surface ten
GB migration, formation of slits with a local steady-state shape in the near-tip region, &
bridging across the slits near their intersections with the surface left behind [21]. The le
set (LS) method seems to be a good candidate for addressing the problems; howev
has never been used for this purpose. As the first step in application of the LS metho
the problem of grooving with an EM flux, we test in this paper the LS method over tw
simple—and already solved—grooving problems, and compare the results of LS met
with those in [10, 17]. The first problem is the classical Mullins problem (GB groovin
controlled by surface diffusion in an infinite bicrystal with a stationary GB). The second
GB grooving by surface diffusion in a periodic GB array of stationary GBs. Finally, we shc
the incorporation of an electric field as a driving force (the electromigration problem) a
present preliminary results which show extremely good correlation with experimental d:

Below we give more details of the physical model.

The Mullins problem—Driving forces and diffusion mobilitiegn the absence of an
electric current, the diffusion is driven by a variation in chemical potentig),which
causes atoms to migrate from high-potential to low-potential regions. It may be shown 1
[17]

us = Ksys€2, (1.1)

whereKg is the surface curvaturey is the surface tension, arfelis the atomic volume.

Gradients of chemical potential are therefore associated with gradients of curvature.
In interconnects, GBs represent numerous fast diffusion pathways with a high diffus

coefficient,Dgy,. As a matter of fact, the bulk diffusion can be neglected [17]. The diffusio
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flux along the GB Jgp, is given by

D b8 b
Jgp = 2LV s, 1.2
gb KT MUs (1.2)
wheredgp is the GB thickness is the Boltzmann constant, aiids the absolute temperature.
Let r be the tangential direction to the surface profile in 2Dn ¥ (ny, ny) is the unit
vector normal to the surface or GB, then the following relations hold:
8 KS 3 KS 8 KS

T = (ny, —nx), Py = VKS ST = ax ny — Tynx = K.? (13)

The surface-diffusion flux along the groove walls (volume crossing unit length per u
time) is given by

Dgds 0 s
I = — 2208 — BKS, 1.4
s kKT 9t ’ (14)

where the superscript indicates that the flux is due to the curvature gradient,

Dsdsys$2

B= —"—
kT

is known as Mullins constant, ands, 85, k, and T denote surface-diffusion coefficient,

thickness of the surface-diffusion layer, Bolzmann’s constant, and absolute temperat
respectively. Note thaly ¥s is proportional to the first directional derivative of the curvature.

(1.5)

Physical boundary condition at the groove roofThis boundary condition is dictated
by the local equilibrium between the surface tensigp,and the GB tensionyg,. In the
symmetric case of a GB«(= 0) normal to an originaly{ = const) flat surface, the angle
of inclination of the right branch of the surface at the groove root with respect todRes
is [17] (see Fig. 1)

6o = Sin*(ygn/2ys) = const (1.6)

The rapid establishment of the equilibrium angle between the GB and the surface by ato
migration in the vicinity of the intersection develops some curvature gradient at the adjac
surface and thus induces a surface-diffusion flux along the groove wall in the direction av
from the groove root, opposite to the groove extension direction.

2. MATHEMATICAL MODEL

2.1. The Conventional Approaches

An adequate mathematical model which captures the above physical phenomena il
terconnects was first developed by Mullins [17] and further extended by him and oth
[13, 14, 18]. It describes the evolution of the groove shge, t) and has the form of a
transport equation

33 Ks
ax

Yo = = —B{(1+ y2) Y2 [(1+y3)73/2)&x]x}x~ (2.1)

JYKs andB are given in (1.4) and (1.5).
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FIG. 1. Sketch of a GB groovew denotes the half-width of the groove, athdienotes the depth.

For an isolated GB at = 0, the groove continues to develop because the material co
tinues to move from the curved shoulder of the groove to the flat surface. The class
description is provided by an analytic solution (on the 0 side) of the linearized version
of Eg. (2.1) (the “small slope approximation,” SSA). The linearized equation has the fo
[17]

Yt = = BYxxx (2.2)

subject to the initial condition

y(x, 0) = const (2.3)

and the boundary conditions

yx(0,t) =tanfp = m<« 1,

10, 1) = yxux(0, 1) =0, (2.4)
y(X — oo,t) = const with all derivatives

The first condition in (2.4) is the small slope approximation itself. The second one refle
the absence of a GB fluJy,. The solution describes a profile with a constant shape who:
linear dimensions are increasing all the time.

Although this analytical approach describes some basic phenomena in interconne
it is of limited use because of the restriction on the steepness of the slope. There
several numerical techniques which are widely used in modeling moving fronts, suct
themarker/string(M/S) methods [26] or thgolume-of-fluid VOF) methods [7, 20]. These
methods deal directly with the evolution equation of type (2.1), and therefore are “explic
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methods. The M/S methods derived from a Lagrangian approach to front evolution proble
In the Lagrangian approach, the grid is attached to the moving front. A known drawbe
of the Lagrangian approach is that it is not well suited to computation of bifurcating fron
In addition, stability and local singularity problems are emphasized more in these meth
than in methods based on an Eulerian approach, such as the VOF method. The Eule
approach,where the front moves through a grid which is fixed in space, does not have tl
drawbacks, but—as is known—here the fronts are diffused. In addition, some intric
(subcell) bookkeeping is required to properly keep track of fronts.

There are numerical approaches which are basdthite-elementliscretization of the
computational region [5]. However, they result in complicated algorithms which involv
many computational steps such as computations of the following: displacement field
material points from a reference configuration, the stress field as a result of diffusion
the solid, and geometry update of interfaces. In addition, the computational comple)
grows because higher resolution is required as the shape of the interface becomes
complicated. As aresult, these methods are unable to handle very complex multidimensi
boundary shapes.

2.2. The Proposed Solution: Use of the Level Set Method

To “capture” the interface (rather than to track it), our method of choice is the “implicit
LS method. The method was introduced by Osher and Sethian and was further develc
during the past several years (for an introduction to the LS methods and an exhaus
bibliography list, see the monographs by Sethian [27, 28]). The method makes it poss
to capture drastic changes in the shape of curves (interfaces) and even topology chan

The basic idea of the method consists of embedding the cuixgt) into a higher
dimensional space. As a matter of fact, we consider the evolution of a two-dimensio
field ¢(x, y,t) such that its zero level sef(x, y,t) = 0, coincides with the curve of
interest,y(x, t), at any time momertt The level set functiog (X, y, t) can be interpreted
as a signed distance from the cumgue, t), which moves in the direction normal to itself.

The evolution ofp(x, y, t) is described by an Hamilton—Jacobi-type equation. A re
markable trait of the method is that the functip(x, y, t) remains smooth, while the level
surfacep = 0 may change topology, break, merge, and form sharp cornefeuaslves.
Thus, it is possible to perform numerical simulation on a discrete grid in the spatial dom
and to substitute finite-difference approximation for the spatial and temporal derivatives
time and space.

The evolution equation has the form

¢+ F|Ve| =0, given ¢(x,t =0). (2.5)
The normal velocityF, is considered to be a function of spatial derivative of, vy, t).

In many applicationsF is a function of the curvaturés, and its spatial derivatives. The
curvatureKg may be computed via the level set functipias

V¢ dx Dy
Ks=V.n, n= = , . (2.6)
Vo <(¢§+¢§)”2 (42 +¢>§)”2>

Heren is “normal vector,” and it coincides with the (previously introduced) unit normal t
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the surfacey(x, t), on the zero level set = 0. Formulas (2.6) can be combined as

' ¢xx¢>2/ — 2pxpypxy + dyyd?

Ke=V- =
Vol (¢§+¢§)3/2

, (2.7)

and the sign oK is chosen such that a sphere has a positive mean curvature equal t
radius. In the case of surface diffusion in 2D,

F=—BK?. (2.8)

One drawback of the LS method stems from its computational expense. Its comple;
seems to be as many @n?) operations per time step, which is more than any Lagrangia
method, which necessitat€x(n) operations per time step, whands the number of grid
points in the spatial direction. It is possible, however, to reduce the complexity of the
method toO(n) using a local (another term is narrow band (tube)) approach [1, 24]. Tt
is achieved by the construction of an adaptive mesh around the propagating interface
distinguish between the “near field,” which is a thin band of neighboring level sets aroL
the propagating front, and the “far field,” which contains the rest of the grid points. Tl
evolution equation is solved only in the near field. The valueg af grid points in the far
field are not updated at all. When the interface in motion reaches the edge of the nat
band, a new narrow band is built around the current interface position. Note that this cc
be done without interface reconstruction from the level set function (which requires so
additional computations).We just have to examine the shift in the signatfgrid points
adjacent to the interface. The width of the narrow band is determined as a balance betv
the computation involved in the rebuilt and the calculations performed on far away poir

In most of the applications of the LS method to date, the driving forces were proportiol
to the curvature (see [27, 28] for review and discussion). There are only a few applicati
[2, 6, 15] where the driving force is proportional to teecond directional derivativef
the curvature (in the 3D case, to the surface Laplacian of curvature which is construc
from the derivatives in each principal direction), which is the case for the normal veloc
function (2.8). Therefore, the present materials science problem presents a rather new (
the mathematical point of view) application for the LS method. As pointed out in [6], “thi
is an intrinsically difficult problem for three reasons. First, owing to the lack of a nic
maximum principle, an embedded curve need not stay embedded, and this has signif
implications in attempting to analyze motion which results in topological change. Seco
the equations of motion contain a fourth derivative term, and hence are highly sensitiv
errors. Third, this fourth derivative term leads to schemes with very small time steps.”

2.3. Computational Algorithm

A typical computational domain is a rectangular boxX {00, |,] of a material in 2D. The
proposed computational algorithm consists of the following steps:

BEGIN ALGORITHM

1. Discretization. The entire computational regidi is discretized using a uniform grid
Xi =iAX,¥j =jAy,i =0...N,j=0...M, whereN and M are the number of grid
points inx- andy-directions respectively. The functions are projected on this grid so th
d(X, Y, 1) = ¢ j(1).
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FIG. 2. Computational domain.

2. Initialization . The initial interfacey(x, t = 0), is defined analytically, or as a set of
points inW (the points lie orx = const. grid lines, but not necessarily pr= const grid
lines). In the latter case, we define a cubic splie, t = 0) passing through these points
to perform further initializations. The functioy(x, t = 0) need not be necessarily smooth
(i.e., it may feature sharp corners, discontinuities, etc.), but in our implementation it mi
be single-valued to make it possible to choose the sigh(bklow).This is because we are
only interested in the particular case of analyzing the motion of open curves which may
described by functions during the whole process of the evolution.

We also define the near field and the far field. The width of the near field is usually 5
10 grid levels (points).

In the regionW, the level set functiom is initialized as an exact signed distance function
to the initial interface (see Fig. 2),

d(Xi,yj,t=0) <0 ify; <yxt=0)
dXi,y,t=0=0 ify;=yxt=0) (2.9)
dXi, Y, t=0>0 ify;>yxt=0).

Sinceg (X, y,t = 0) is a signed distance functiofN¥¢ (X, y,t = 0)| = 1.

3. Computenormal vector components and curvature using formulas (2.6) and (2.7). T
derivatives in (2.6) and (2.7) (as well as in other functiong @ihdy except the gradient
term in the evolution equation itself; see step 6) are discretized using the standard sec
order-accurate central difference approximations. Fourth-order-accurate approximat
were also tested, but we did not observe any particular increase in the global accuracy o
calculations. In addition, in this case, the implementation of the boundary conditions w
the level set function is problematic because of the use of a wide stencil. The time step
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needs to be reduced to have stability. We find that the standard central difference sch
works well for us.

4. Computefirst directional derivative of the curvaturk,’,using the formula (1.3) and
second directional derivative of the curvatuke, ,

—K$ b2 + 2KS pupy — K592 LK (Ksox + KSoy)
¢Z + ¢2 (92 +92)"
_ KoY + 2Ky xdy — KG
$2 + p2

We now have the normal velocity function (2.8) and the flux (1.4).
5. Choosdtime step. The CFL condition for the surface diffusion is

K, =VI[VKs-1] -7 =

+Ks[K+KJ (N +ny) —KZ(ny —ny)]. (2.10)

Aty < min*(Ax, Ay)/B. (2.11)
The CFL condition for the Hamilton—Jacobi equation in updating the velocity is
Aty < min(AX, AY)/Fmax (2.12)

whereFnax is the largest magnitude of the normal velocity in the computational domai
The adaptive time stept is chosen as the smaller of the two.

6. Compute backward and forward gradient functiongpdate ¢ from the evolution
equation using explicit time-stepping scheme. The solutions of Eq. (2.5) are often o
uniformly continuous with discontinuous derivatives, no matter how smooth the initial de
[22, 23]. Simple central differencing is not appropriate here to approximate the spa
derivatives in|V¢|. Instead, we use essentially nonoscillatory (ENO) type schemes f
Hamilton—Jacobi equations as developed in [22, 23, 29]. More precisely, we use secc
order ENO scheme given explicitly in [33]. To updatefor one time step, the simplest
method is to use Euler, i.e.,

P = ¢" + AtL(¢"), (2.13)

whereL (¢) is the spatial operator in (2.5).
7. Updatenear field. Check the sign gf at the grid points adjacent to the interface anc
compute the new locations of near field points.

Gotostep 3
END ALGORITHM

Remark 1. To achieve a uniformly high-order accuracy in time, we replace (2.13) wit
the second-order total variation diminishing (TVD) Runge—Kutta-type discretization [2

29], which reads
n+1 — n+AtL n
¢ ¢ N () ~ 2.14)
o™t =" + S ILeN+ L(e"™)].

The necessary changes to the algorithm are obvious. The choice of such a low-order Ru
Kutta scheme is justified by the fact that the time step, dictated by stability requiremel
is very small.
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Remark 2. It is highly desirable that the level sets behave nicely, in the sense that t
different level sets do not cross, and in fact remain roughly evenly spaced in time. In ter
of the level set functiom, this corresponds to the fact that the gradienp @t any given
point of a level set does not change dramatically over time. For the numerical method
translates into numerical stability. The best way to achieve this is to #espse to the
signed distance function (or even to keep it exactly equal to the signed distance functit
thus keepingV¢| ~ (=)1. The operations performed @nthat accomplish this are called
“reinitialization.” To summarize, reinitialization is the process of replacitg, y, t) with
another functiosp(x, v, t) that has the same zero contourgs, y, t) but behaves better,
and then taking this new functiah(x, y, t) as the initial data to use until the next round of
reinitialization. There are several ways to do this. The straightforward one (first propos
in [16] and recently used in [2]) is to interrupt the time stepping, reconstruct the interfa
using some interpolation technique, and directly compute a new signed distance func
to the interface. This approach is very expensive and also may bring some undesirable
effects, such as oscillations in the curvature. Instead, we use the iteration procedure of |
The functiong is reinitialized by solving the Hamilton—Jacobi-type equation to its steac
state, which is the desired signed distance function,

¢t = S(¢o) (1 —|V9)), (2.15)
whereSis a smoothed sign function,

S(¢o) = L, € = min(AXx, Ay). (2.16)

90 + €2

The same second-order ENO and TVD Runge—Kutta schemes used for the solution
Eq. (2.5) are used for the iteration of (2.15). As a rule, three or four iterations are sufficit
to evolve¢ close enough to the desired signed distance function. An important practi
guestion is how frequently the reinitializations are applied. In some applications of t
level set method, the reinitializations could be triggered after a fixed number of time ste
However, we achieved the best results by reinitializing every time step in the band of le
sets that contains points from the near field.

Remark 3. The evolving interface touches the vertical boundaxies 0, x = |; at its
ends and therefore any boundary conditions imposed on vertical walls influence the ¢
lution of the front. This is why, depending on the nature of the problem, we choose eitl
periodic boundary conditions at vertical walls or only an approximation of the derivativ
at vertical walls by one-sided differences. At the horizontal walls, we always use one-sic
differences. For illustration purposes, in Fig. 3 we present part of the cosine curve evolv
under (2.5) with the speed functiéh= —0.1K?,. Boundary conditions at vertical walls are
periodic. Note that the speed of evolution slows as the curve approaches equilibrium s
with Ks = 0 (liney = 0.5). This is because the curvature, and hence its derivative, becon
smaller. To demonstrate the abilities of the method, in Fig. 4 we present the evolution ¢
nonsmooth curve (step function) under the same speed law.

Remark 4. The very special feature of the presented implementation of the level <
method is the incorporation of physical boundary conditions into the level set numeris
scheme. Most of the implementations known so far lack this complication. Usually or
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FIG. 3. The cosine curve, evolving under (2.5) with= —0.1 K?,. A coarse 75< 75 grid is used. 25,000
time steps were made by the Runge—Kutta integrator (the shape is printed out every 500 steps), and we reinit
in every step.

closed interfaces far away from any boundaries domains are considered, while the evolt
proceeds far away from the boundaries.

For GB grooving by surface diffusion, two boundary conditions at the groove root &
essential: these are conditions of type (2.4), reflecting the fixed slope of the interface
the absence of GB atomic flux. The boundary conditions we impose-dt are zero slope

0.75 T T T T
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FIG. 4. The evolution of a nonsmooth curve (step function). The grid used is<1000; 20,000 time steps
were made.
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of the interface and zero flux. The first condition echoes the initial flat interface. The secc
condition guarantees the conservation of matter, i.e., a constant area under the groove p
during the evolution.

Special attention was given to the treatment of these boundary conditions within |
framework of the level set method. Two methods were developed.

The simplest techniques the use of correction step in the iterative algorithm. The fixec
slope at the groove root is achieved in the following way: at every time step, the interfe
is reconstructed from thg field and the locations of the two end points of the interface (a
x = 0 andx = |1, respectively) are corrected to preserve the small-slope and the zero-sl
conditions.Then, for all grid points that lie on grid lines= 0 andx = |4, it is sufficient to
directly compute a new signed distance to the updated locations of the interface end po
This way we incorporate the new locations of the end points back inte tield. This
direct reinitialization is performed only for a few grid points that lie on vertical boundarie
and, besides, this computation does not contain an iteration loop. The zero-flux conditi
could be imposed locally, i.e., in the vicinity of the groove root and of the interface et
point atx = I;, or along the the entirg = 0 andx = I, grid lines. After the computed
values ofK? are reset to zero, th€?_ is computed according to Eq. (2.10), whéi@ =0
atx = 0,1; andK? # 0 otherwise. After multiplication by- B, this gives the values of the
normal velocity function (2.8), corrected by the zero-flux constraint.

Extension of the field beyond the GBmakes use of Taylor expansion up to seconc
order (also see Eq. (2.6)),

$-1j = o) — dxfoj AX =0 — Ve il Nefoj AX = o + Vo j|sinbo AX,

(2.17)
where¢_; ; is one grid point beyond the GB. Equation (2.17) incorporates the groove rc
angle. Then we compute in (2.7) the curvature valligs;, along the GB, using both the
values of inside the computational domaig(j) and outsideg_, ;). This also gives us the
values oﬂ<§'|0,j . The zero-flux condition is applied using Eq. (1.3), which, after substitutio
of normal vector components from (2.6)and rearrangement of the terms, becomes

K3Vl + KJox

Kloj = ¢—y|0,j = —K$|oj tando. (2.18)

Applying Taylor expansion again, we get the ghost values of the curvature,
Ky =Kg; — Kgloj AX, (2.19)

whereK§|O,j is given by (2.18). Now all the data are known and we can compute the valu
of K7, from (2.10) and the values of the normal velocity from (2.8).
Both methods were used successfully in calculations.

3. NUMERICAL RESULTS: MULLINS PROBLEM

Figures 5 to 7 show the groove profile with different slopes at the groove root, evolvi
under (2.5) witha speed functidh= —BK?,. We takeB = 0.025. The profile is symmetric
withrespecttothe GB at = 0; therefore onlyitsright partis calculated. The results obtaine
by means of the LS method are shown with solid lines, while reference results for Mulli
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FIG.5. GB grooving by surface diffusion. The slope at groove roehis- 6.55e-02. The initial interface is
shown with dashed—dotted line. The numerical results obtained by means of the LS Method are shown with
lines. The reference results of [17] are shown with dashed lines.

problem (2.2)—(2.4) are shown with dashed lines. In all the three numerical experime
reported here, the dimensions of the computational box ar@.[i8; 0., 0.02], and the mesh
is 120x 40.

Our initial interface for the level set simulations already has the shape of Mullins groo
The reason we do not have a flat interfg¢g, 0) = const as an initial condition is that the

0.0102 T T T T T

0.0101

0.01

0.0099

0.0098

0.0097

0.0094 . L L L .
0 0.01 0.02 0.03 0.04 0.05 0.06

FIG. 6. GB grooving by surface diffussion. The slope at groove roat is 9.85e-02.
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FIG. 7. GB grooving by surface diffusion. The slope at groove romhis: 1.32e-01.

LS formulation requires a nonzero initial curvature; otherwise, the curve does not evolve
all (sinceF = 0inthis case). The initial interface in Figs. 5—7 is shown with dashed—dotte
line.

The initial Mullins groove is obtained as follows: We numerically integrate Eq. (2.2
using the method-of-lines approach. The time integrator is second-order Runge—Kutta
the spatial operator is discretized using second-order central differences. The integre
proceeds front =0 tot = 8.0e-09. The initial and boundary conditions are given in
(2.3) and (2.4), wheréy, = /48, 7 /32, andx /24 represent Figs. 5-7, respectively. The
corresponding slopes am = 6.55¢-02 9.85¢-02 and 132e-01. The practical values
used in the experiments lie between 0.05 and 0.2 and the range of the groove deptt
experiments is between 0.1 anduin. The reason we anticipate the use of the analyti
solution to the Mullins problem (2.2)—(2.4) (if it exists) is the truncation of infinite serie
in which this solution is represented. The reference results for later times are also obtal
using the described numerical procedure.

In [17], two kinetic laws were established (within the framework of the SSA). On
concerns the evolution of the depth of the groove with respect to the maximum surf:
elevation (see Fig. 1). The depth,is governed by

d = 0.973m(Bt)Y4. (3.1)

The other kinetic law concerns the evolution of the distance between the position of
groove root and that of the surface maximum. In the case of the symmetric groove, we
it the half-width,w, of the groove. It is governed by

w = 2.3(Bt)V4. (3.2)
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TABLE |
Our Results for GB Grooving, Compared with Classical Mullins Results

Step t d,Eq.(3.1) d,LSM. w,Eq.(32) w,LSM. w/d, Eq.(3.3) w/d,LSM.

0 8.0e-9 239e-4 239e-4 860e-3 860e-3 360et+1 3.60et+1
2e+3 16e-8 285e—4 250e—4 103e-2 101le-2 360et+1 4.03et+1
4e+3  24e-8 315e—4 268e-4 114e-2 108e-2 360et+1 4.02e+1
6e+3 32e-8 339e-4 284e-4 122e-2 113e-2 360et+1 399%+1
8e+3 4.0e-8 358e—-4 299e—-4 129e-2 119e-2 360et+1 396e+1

10e+3  4.8e-8 375e-4 313e-4 135e-2 123e-2 360et+1 394et+1
12e+3 5.6e-8 390e-4 R6e—-4 141e-2 128e-2 360e+1 39letl
14e+3 6.4e-8 403e-4 338e—4 145e-2 132e-2 360et+1 389%e+1
16e+3 7.2e-8 415e-4 3H0e-4 150e-2 135e-2 360et1 3.87etl
18e+3 80e-8 426e-4 Ble—-4 154e-2 139e-2 30et1 3.85et+1

Note.The slope at groove root im = 6.55e-02.

From these expressions, we have the time-independent ratio
w/d = 2.3515m. 3.3)

Under typical experimental conditions a groove of deghtl 0.3 um is formed within
t = 10*s (2.4 h). Itis shown in [17] that it would require approximately 8 days to triple thi
depth. This explains why in our numerical experiments the groove seems to stop develo
at later times. The physical reason for this is the increase in the length of a path along w
the surface diffusion takes place. As a rule, we stop the run when the groove double:
depth or width.

For the slopes considered, we observe good qualitative agreement with Mullins solut
The small difference is due to two reasons. First, the results with which we compare
obtained by integrating the linearized equation (2.2), which is, strictly speaking, valid or
for infinitesimal slopes. The slopes we choose are, of course, finite, and the goverr
equation we solve, i.e., Eq. (2.5), is fully nonlinear. Second, there are inevitable area los
since the LS method is not fully conservative. For bigger slopes, our grooves appear t
deeper and wider than that of Mullins.

In Tables I to Ill, the results for all the three tests are summarized.

An interesting simple extension of the classical two-grain model is the case of a perio
array of grains separated by parallel GBs. In Fig. 8, we present the results for the evolu
of a surface profile intersected by two GBsndi + 1. The physical boundary conditions
at both groove roots are a constant slope of the surface and zero flux (for this exan
the slope at groove roots is = 9.85e-02). At short times, grooves develop at each grair
boundary according to the solution for an isolated grain boundary, as presented in Figs.
grooving stops when, at sufficiently long times, identical circular arcs develop connect
adjacent GBs. The same result was obtained in [10] using Fourier method and the SS,

4. THE ELECTROMIGRATION PROBLEM

If an electric field is present, the fluk of matter at the curved surface of the conductor i
driven simultaneously by curvature gradients and by the compdnhenthelocal electric
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TABLE 1l
Same as Table I, but the Slope at Groove Root i = 9.85e-02

Step t d,Eq.(3.1) d,LSM. w,Eq.(3.2) w,LSM. w/d, Eq.(3.3) w/d,LSM.

0 8.0e-9 359e-4 3H%e—4 861e-3 81e-3 240e+1 2.40et+1
2e+3 16e-8 429e-4 395e—-4 103e-2 103e-2 240e+1 26let+l
4e+3 2.4e-8 474e-4 438e-4 114e-2 113e-2 240et+1 2.59%e+1
6e+3 32e-8 510e-4 477e-4 122e-2 121e-2 240et+1 255et+1
8e+3 4.0e-8 539e-4 512e—-4 130e-2 129e-2 240e+1 252et+1

10et+3 4.8e-8 564e—4 5e-4 135e-2 136e-2 240et+1 249et+1

12e+3 5.6e-8 586e—4 576e—4 141e-2 142e-2 240e+1 247e+l

14e+3 6.4e-8 606e—4 605e—4 145e-2 148e-2 240e+1 244e+1

16e+3 7.2e-8 624e—4 633e-4 150e-2 153e-2 240e+1 242et+1

18et+3 8.0e-8 641le-4 659e—4 154e-2 158e-2 240e+1 241e+l
TABLE 11l

Same as Tables | and II, but the Slope at Groove Root is1 = 1.32e-01

Step t d Eq.(3.1) d,LSM. w,Eq.(32) w,LSM. w/d,Eq.(3.3) w/d, LSM.

0 8.0e-9 480e—4 480e—-4 861le-3 861le-3 179e+1 179%e+1
2e+3 16e-8 574e-4 560e—4 103e-2 106e-2 179e+1 189et+1
4e+3 24e-8 636e—4 642e—4 14e-2 119e-2 179e+1 185et+1
6e+3 3.2e-8 683e—4 715e-4 122e-2 130e-2 179e+1 18let+1
8e+3 4.0e-8 122e-4 780e—-4 129e-2 139e-2 179e+1 178et+1

10e+3 4.8e-8 756e-4 839e-4 135e-2 147e-2 179e+1 176et+1
12e+3 56e-8 786e—4 894e—4 141e-2 155e-2 179e+1 174e+1
14e+3 6.4e-8 812e-4 HAde-4 145e-2 162e-2 179e+1 172e+1
16e+3 7.2e-8 836e—4 90e-4 150e-2 169e-2 179e+1 170et+1
18e+3 8.0e-8 859e—4 103e-3 154e-2 175e-2 179e+1 169e+1
0.0105 T T T T T T T
0.01
0.0095
0.009
0.0085 p
0.008 L L 2 1 ' L 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

FIG. 8. Long-time evolution of surface profile intersected by two adjacent GBs. The initial surface for L
simulations is shown with dashed—dotted line.
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field along the surface. L& and O denote the conductor (interconnect) material domait
and the outer (surrounding) material domain above the surface profile, respectively |
Fig. 1). In adrift velocity (DV) experiment [4], the surface in question represents the cathc
edge of the interconnect, while the outer domain is an underlayer with higher resistiv
e.g., TiN. Assume that (at a given time step of overall marching algorithix), y) is

the electric potential within the (rectangular) computational kdx(U*) andU*(U ™)
are its values on the upper and lower boundaries of the boxXJaigithe normal derivative
on the boundaryJ — andU ™ are assumed to be time-independent and uniform along tl
boundariest) * — U~ is the external voltage applied to the interconnect. The distributio
U (X, y) is governed by a static elliptic partial differential equation (PDE),

d U 0 U
— (k= — [k— ) = 4.1
8x< ax>+8y< 8y> 0 (4.1)

with boundary conditionsl, = Uy = 0 on the vertical boundaries of the box (which in our
case coincide with GBs). Equation (4.1) is derived from the well-posed three-dimensio
potential problem for the two-layer interconnect. The assumptions and complete deriva
for the small aspect ratio are presented in [2]. In Eq. (&1 k(X, y) is the specific
electrical conductivity (ata given time step) of the material which fills the computational bc
To solve (4.1), afinite-difference scheme was developed and analyzedin [2]. The distribu
of the specific conductivity in the physical system under consideration is discontinuous:
conductivity inside the conductor material (dom@inFig. 1) differs by a finite value from
that of the surrounding material (domad). We assume

in = const > 0 if grid point(x;, yj) € C
k:{ n grid point(x;, y;) “.2)

Kout = const > 0 if grid point(x;, y;) € O,

i.e., thatk = k(y) is a step function. In our numerical experiments we chose the rat
kout/ kin = 0.1. Since the surface of the conductor evolves in time and space, to find |
time-dependent solutiod (X, y, t) we need to solve the static equation (4.1) every tim¢
step withk given by (4.2). To compute accurately the electric field intensity (which is th
derivative ofU) the discontinuous distribution of the specific conductivity is smoothe
out across the surface profile. The finite-difference discretization of (4.1) in the comj
tational domain leads to a set of linear algebraic equations with a sparse-banded me
This set is solved with an effective multigrid iterative procedure [2]. The solution of tt
previous time step is used as an initial approximation for the current step, which allows 1
convergence.

After the potential is established everywhere in the computational domain, the cot
sponding electrically induced surface flug is given by

JE_ _DsdsZs

s = TEz—BeE, (4.3)

where

E=—7-VU, (4.4)



780 KHENNER ET AL.

the superscript indicates that the flux is due to the electric field, and

Dsgs ZS
Be =
e kT )

(4.5)

whereZs = Zieis the effective charge of the ions undergoing electromigration in the surfa
layer ande is the unit electronic charge; the signafis usually positive (i.e., matter flux
in the direction of the electron flow).

To summarize,

Js = IVK 4 JE, (4.6)

where Js is the total surface flux, andY is its surface-curvature-driven component.
Physically, Eq. (4.6) says that atoms will diffuse in the direction of the electron flow
the field dominates, but toward the position with the large curvature if the surface ene
dominates. This competition between the electric field and the surface energy is esse
for the groove dynamics.

The electric field also results in the diffusion of matter along GBs. The nonzero diffusi
flux along the GB Jgp, in the presence of the electric field is given by

ngSQngb

E 4.7
T ; (4.7)

whereZg, = z;,e > 0 is the effective ionic charge, arilis the component of the electric
field along the GB. In addition to (1.6), the boundary condition which is due to the elect
field reads

\]gb|groove root= 2 (\]SE + JSVK) |groove root (4-8)

since both branches of the groove (to the left and to the right from the GB) act as sinks
sources of matter. Obviously, (4.8) reflects the continuity of material fluxes.

With the addition of the electric field, the normal velocRy(see (2.8)) is now changed
to

0k _0a< 0dF
atT atT ot ’

(4.9)

where Js is given by (4.6). The details of the calculation of the normal velocity functiol
(4.9) are given in [12].

5. NUMERICAL RESULTS: THE ELECTROMIGRATION PROBLEM

The advance of the surface (front) and GB grooving under combined curvature ¢
electric field effects was simulated for copper interconnects with grain s&eud at
temperature 600 K. The corresponding parameter §etis1.18 x 1072°m®, Ds = 3.3 x
104 m?/s, ys = 1.7 Jinf, KT =828x 102t ) Ut =—-U"=50x103V, ky =
108 (@M) 7%, Ko = 10" (@mM)~2, 8gp = 8s =35 x 1070 m, z =z}, =5, b = 7/22.
Due to the large number of material parameters involved, we concentrate on the influe
of the one which was predicted to greatly affect the grooving process, i.e., the ratio of
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FIG. 9. GB grooving by surface/GB diffusion driven by the surface curvature gradients and the electror
gration. (a)rg = 0.224, (b)rq = 0.336, (c)rg = 0.561, (d)rqy = 22.424. The surface profiles are dumped every
5000 time steps. The time labels correspond to the (physical) time at which the last profile is dumped.

GB to surface diffusivityyy = Dgp/Ds [9]. It should be noted that (i) the experimentally
measured values of diffusivities could vary, according to different sources, by up to th
orders of magnitude, and (iips can be smaller thag,, due to, for example, surface
contamination, thus giving, > 1. Typical space—time evolution profiles are shownin Fig. 9
The dimensions of the computational box ai® Q 0.5 um (the horizontal dimension being
equal to the grain size), and the grid has a660 resolution.

The displacement of the surface with time in Fig. 9 is an accurate illustration of t
advancing cathode edge in EM DV experiments. After a transient stage, the displacer
velocity Ve reaches a constant value, dependent on temperature through an Arhennius-
function,

Vem = (Vo)em€XP(— Eem/KT), (5.1)

where(Vp)em IS the prefactor anét., is the activation energy. A good matchhadthvalues
between simulation and experiment constitutes a rather rigorous test for the simulation.
have obtained preliminary results fovg)em and E¢m, calculated using the most accurate
literature values for both surface and GB diffusivities in copper; these are known at vari
temperatures through their own Arhennius relationships. For paramet@get= 0.26 x
104 m?/s, Es = 0.9 eV and(Dg)qp = 0.06 x 10~% m?/s, Egp = 0.95 eV we obtained
(Vo)em = 3.47 x 10° um/h and E¢r, = 0.87 eV. These calculated values are in excellen
agreement with experimental values 064 10° um/h and 094 eV [11], even after we
account for some differences, such as grain size and current density. A more detailed re
is given in [19]. It appears that the level sets model-based simulation allows, for the f
time, an accuratquantitativedescription of DV experiments in polycrystalline lines.
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6. CONCLUSIONS

The level set method was used to model the grain-boundary grooving by surface diffus
in an idealized polycrystalline interconnect which consists of grains separated by pare
GBs. The novel feature of the method is the treatment of physical boundary condition:
the groove root. The results obtained are in good agreement with the classical one [17
the case of an isolated grain boundary (two-grain case) and with more recent results of
for the case of periodic array of grains. In addition, the algorithm and its software impl
mentation were used to pursue studies of GB grooving with an arbitrary electromigrat
flux. Preliminary results for Cu at 600 K show an excellent quantitative agreement of di
velocity preexponent and activation energy between simulation and experiment.

The final time step in the simulations is small. In the Appendix we suggest how to u
an implicit approach that can speedup the simulations.

APPENDIX: IMPLICIT STABILIZATION

We assume initially that we have to solve the linear constant coefficient PDE:

dp
e —AAZg. (A1)
An explicit scheme
(pn+1 _ gan 52 35
_ X n n_ _n
Tat - Mlaetag) v (%.2)

Von-Neuman (Fourier) stability analysis gives

B 1 . aAX 1 BAyY 2 _
u=1-16AAt [(Ax)z sir? ( 5 ) T ay? sir? ( 5 )} =1- AtAS,.
(A-3)

The stability condition requirgg.| < 1 and the worst case is achieved when the sine terrr
reach their maximum values of 1.
For the case oAXx = Ay, we get a very severe restriction:

(Ax)*
32A

At < (A.4)

Let us add a stabilizing teril A2y to both sides,

9
8_(:) + MAZp = (M — A)AZ.

We discretize in time as

(pn+l + MAtAZ(pn+l — (M _ A)AtAZQDn +¢n’
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and we get

1+ (M — AALS?
lul =

<1 A5
1+ MAtS? -7 (A-5)

whereS can be the continuous symb®k= o? + 2 or the discretes, 4.
Now asAx — 0 for a fixedAt the S* terms dominate so tha¥'=2| < 1°, sinceM, A >
0, we need

>-1, 2M>A, M>

<
[
>
N[ >

Inthe linear case, takingl = %(1 + cAt) will resultin a second-order scheme in time and
absolute stability. For the variabke, we will require

M > max|A(X, y)I.
X,y

The Solution Process

Let
(pn+1 + MAZ(anrl — Fn’ (A6)
whereF" is known. For the periodic case, we write bgtland F as Fourier expansions

ij — Rez lfo,,,gei (aj Ax+BkAy)
p (A7)
+1 ~ i (aj Ax4-BKA
(p?k = Rez@a,ﬁel(al X+pB y).
a.p

We find Ifa,,s by FFT and ther, 4 from the Fourier tranform of Eq. (7.6)
Pap (L+ M@ + D) = Fup.

or we may use the numeric&l, g which approximates the exact symbol. It is less accurat
but avoids some of the Gibbs phenomena. Then each coefficient is obtained by appl
the inverse Fourier transform.
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